Sparse block factorization of saddle point matrices

نویسندگان

  • S. Lungten
  • J. M. L. Maubach
  • W. H. A. Schilders
چکیده

The factorization method presented in this paper takes advantage of the special structures and properties of saddle point matrices. A variant of Gaussian elimination equivalent to the Cholesky’s factorization is suggested and implemented for factorizing the saddle point matrices block-wise with small blocks of order 1 and 2. The Gaussian elimination applied to these small blocks on block level also induces a block 3 × 3 structured factorization of which the blocks have special properties. We compare the new block factorization with the Schilders’ factorization in terms of the sparsity of their factors and computational efficiency. The factorization can be used as a direct method, and also anticipate for preconditioning techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Antitriangular Factorization of Saddle Point Matrices

Mastronardi and Van Dooren [this journal, 34 (2013) pp. 173–196] recently introduced the block antitriangular (“Batman”) decomposition for symmetric indefinite matrices. Here we show the simplification of this factorisation for saddle point matrices and demonstrate how it represents the common nullspace method. We show that rank-1 updates to the saddle point matrix can be easily incorporated in...

متن کامل

Null Space Algorithms for Solving Augmented Systems arising in the Mixed Finite Element Approximation of Saddle Point Problems

We use a Null Space algorithm approach to solve augmented systems produced by the mixed finite element approximation of saddle point problems. We compare the use of an orthogonal factorization technique for sparse matrices with the use of a sparse Gaussian elimination for the computation of the Null Space. Finally, we present the results of the numerical tests which we performed on selected pro...

متن کامل

On Signed Incomplete Cholesky Factorization Preconditioners for Saddle-Point Systems

Limited-memory incomplete Cholesky factorizations can provide robust preconditioners for sparse symmetric positive-definite linear systems. In this paper, the focus is on extending the approach to sparse symmetric indefinite systems in saddle-point form. A limited-memory signed incomplete Cholesky factorization of the form LDL is proposed, where the diagonal matrix D has entries ±1. The main ad...

متن کامل

On the eigenvalues and eigenvectors of nonsymmetric saddle point matrices preconditioned by block triangular matrices

Block lower triangular and block upper triangular matrices are popular preconditioners for nonsymmetric saddle point matrices. In this note we show that a block lower triangular preconditioner gives the same spectrum as a block upper triangular preconditioner and that the eigenvectors of the two preconditioned systems are related. Nonsingular saddle point matrices of the form

متن کامل

IMF: An Incomplete Multifrontal LU-Factorization for Element-Structured Sparse Linear Systems

We propose an incomplete multifrontal LU-factorization (IMF) preconditioner that extends supernodal multifrontal methods to incomplete factorizations. It can be used as a preconditioner in a Krylov-subspace method to solve large-scale sparse linear systems with an element structure; e.g., those arising from a finite element discretization of a partial differential equation. The fact that the el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014